If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2+6x-3=0
a = 45; b = 6; c = -3;
Δ = b2-4ac
Δ = 62-4·45·(-3)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-24}{2*45}=\frac{-30}{90} =-1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+24}{2*45}=\frac{18}{90} =1/5 $
| 1/2x+2=1/6x+4/3 | | 2n=8(2n+7) | | -5(3y+4)-4=9(y+4)+3y | | z−17.2=7.13 | | 3+2x+7=3x-9 | | 0=-16t^2-6t+482 | | 4+2(x-3)=-7(2x-1)=5 | | 16x2−36=0 | | 16x^2−36=0 | | F(x)=-2x^2-28x-90 | | 6v=4+4v | | -9z+2z=9z+12 | | 2v=15-3v | | 2v-7=28 | | w/2+3=4 | | F(x)=-3x^2+42x-144 | | 4(2y+4)-11y=0 | | 13-5/4t=6 | | w-1/4w=1/2+5/8 | | 2x^2+7x+36=0 | | 5/(2w)-7/(3w)=1 | | w+1/2=-1/4w+5/8 | | |6x+19|=|7x-6| | | 5x+3(1/3x-13/3)=2 | | 1/3a-1/2a=2-3 | | x—49=24 | | 3x^2-4x=x+50 | | 1/3b-1/2b=2+1 | | 5k+6=11 | | 1/3b-1/2=2+1 | | w^2+4w=300 | | 21+12z=-15 |